
AD-AO80 360 AIR ORCE INST OF TECH WRIGHT-PATTERSON
AFB OH SCHOO--ETC FtB 9/2

MIME MICROPROGRAMMABLE MINICOMPUTER EMULATOR. PHASE 11. VOLUME-ETC(Ul

DEC ;.9 T Rp HOY1T, D A MYERS

UNCLASSIFIED AFIT/GCS/EE/7911VOLI1N

mhmhh,,i~mhmmmmu
mhmhhhmhmhum

3 --80
-Ehhhhmhhmh

AFIT/GCS/EE/'79-11

MIME, MICROPROGRAMMABLE MINICOMPUTER
,EMULATOR. PHASE Z, - --

VOLUME I. '.

THESI S

AFIT----!FE'De?11" Thomas R. Hoyt

Dean A. Myers

Approved f or public release; distribution unlimited.

AFIT/GCSIE/79-11

MIME: MICROPROGRAMMABLE

MINICOMPUTER EMULATOR

PHASE II

VOLUME I

THESIS

J
Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University (ATC)

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Thomas R. Hoyt, B.S.M.E.

Captain USAF
Graduate Electrical Engineering

December 1979

Dean A. Myers, B.S.E.E.

Captain USAF
Graduate Computer Systems

December 1979

Approved for public releasel distribution unlimited.

Acknowledgements

We gratefully acknowledge the assistance of Capt Rick

Purvis, one of the creators of the original MIME, and our

point of contact with ASD/ENAIB, the co-sponsor of this thesis.

Rick was our mentor in the early days of the investigation,

our quality control throughout the effort, and often the person

with a solution when we were stymied by a problem. Without

his help, this thesis would never have progressed as well nor

as far.

We are indebted to the AFIT laboratory staff, led by Mr.

Bob Durham. Special recognition goes to Mr. Dan Zambon, who

..accomplished the electrical fabrication of the enhancements

that we made to MIME.

Our thesis committee, consisting of Maj Alan A. Ross, Dr.

Gary B. Lamont, and Dr. Thomas C. Hartrum, performed an inval-

* uablefunction with their judicious level of direction to this

project. We found it most instructional and satisfying to be

encouraged to make our own design decisions, as would be the

case in a production environment.

Last, but assuredly not least, we thank Ms. Laura Tucker

who, besides being the loving wife and source of inspiration

to one of us, made extraordinary efforts to complete the typing

of this lengthy report.

t oclal• I n:_-:.,..... ..Z. iAK1ll~]|.... ... ,1

C e

Volume I

Acknowledgements

List of Tables vi

List of Figures vii

List of Terms . viii

Abstract. .xii
I. Introduction 1

Microprogramming 1
Emulation . . * * .. * ' 3
Statement of the Problem 3
Background*. 4
Goals--- -. 5
Approach . 6
Related Research Survey. 7
Organization.10

II. Requirements Definition. 11

MIL-STD-1750 Requirements. 12
Memory . 12
Registers. 12Data . 14
Instructions 15
Special Features 15

MIME Capabilities. 19
Memory . 19
Registers 19Data 21
Instructions 21
Special Features 21

Comparison Summary 23
Software Tools 23

Translator 23iMonitor . 25

Summary. 25

III. Hardware Realization 26

Auxiliary Registers. . . . 026
The Problem. 26
Possible Solutions 27

iii

Implementation. 29
Status Word (SW) 31

The Problem 31
Possible Solutions. 31
Implementation31

Fault Register. 32
The Problem 32
Implementation. 32

Interrupts. 32
Timers .. 32

The Problem 32
Possible Solutions. 33
Implementation. 33

Control Store Expansion...... 34
Microword Changes 34
Interface to MIME 36
Summary 37

IV. Software Tools38

Introduction. 38
MIME Language and Translator. 38

Goals... 38
Language Rationale 40
Translator Rationale. 40

Language Structure. 43'M icroprogrms .".43
Input and Output Files. 44

Microstatements 45
Bus Transfer Microttmns 45
ALU Function Microstatements. 46
Disable Byte Microstatements. 47
Set Condition Code Microstatements. 47
Interrupt Control Microstatements 48
Command Microstatements 48
Auxiliary Command Microstatements 48
Transfer Microstatements 48

MIME Modest Monitor (MIME/MMi) 51
Goal. 52

Rationale 52
MIME/MM Functions 53
Dump Registers (DR) . 54
Load Registers (LR) 54
LoadMemory (LM) 54

Dump Memory (DM). 54
Dump to Tape (DT) 54
Load from Tape (LT) 54E x i t (E)5 4
Initialize*(i) 55..

Summary . 55

V. MIL-STD-1750 Emulation. 56

iv

Introduction. 56
Deviations from MIL-kT-1750. 56
Emulation Hardware 59

Registers 61
Timers 61
Status Word 61
Fault Register. 61
Condition Flags 61
Aux Board Interface to Microword 61

Emulation Software 62
Emulation Results 64
Summary 67

VI. Results, Recommendations, and Conclusion 68

Results 68
MIME Hardware Enhancement . . . 68
Microprogramming Language and Translator: . . . 69Monitor o o 69
MIL-STD-1750 Emulation. 70
Documentation 70

Recommendations 671

Computer Based Development System 71
ALU Redesign 72
MIL-STD-1750 Extensions 72
Microcoded Self-diagnostics 74

Conclusion 74

Bibliography 76

Vitae .. 77

v

rList 21 Tbe

Table a"e

I Interrupt Definitions 17

II MIME,4!IL-STD-1750 Comparison 24

III Example Instruction Execution Breakdown 66

vi

List _cf Figures

FigMure Pag e

1. Status Word and Fault Register Formats 13

2 Data Storage Formats 16

3 MIME Architecture, Phase I 20

4 ~Use of the Auxiliary Registers 30

5 MIL-STD-1750 Auxiliary Board Block Diagram . . . 60

6 MIL-STD-1750 Emulation Block Diagram 63

7 Computer-based Development System 73

vii

r List of Terms

AB Address Bus

ALAT A address latch

A latch A address latch

ALB A less than B (Comparison of bytes A and B)

ALU Arithmetic Logic Unit

AMD Advanced Micro Devices

Am2900 AMD 2900 series of integrated circuits

AMUX A address mux

AUX Auxiliary Module

AUXn Auxiliary Register number n (AUX)

backplane Wiring between edge connectors

BAR Base Address Register (I/O)

BLA B less than A (Comparison of bytes A and B)

BLAT B address latch

B latch B address latch

BMUX B address mux

BP Breakpoint

BRMUX Branch mux

bus Collection of paths for signals that
perform similar functions

CCR Condition Code Register (macro level)

. CCU Computer Control Unit

CS Control Store

CSB Control Store Buffer

DB Data Bus

DBR Data Buffer Register

DC Display Code

viii

DFF Direction Flip-flop (I/0)

DMA Direct Memory Access

DO Derived Operand

EPROM Erasable programmable read-only memory

FP Front Panel

FR Fault Register (AUX)

hex Hexadecimal

i Subscript used to indicate integer

IC Instruction Counter

IM Interrupt Mask

IMUX Instruction mux; chooses input to 2901's

I/O Input/Output Module

1OB Input/Output Buffer (I/0)

IOBR Input/Output Buffer Register (I/O)

IR Instruction Register (CCU)

K 102410, as in 1K words = 102410 words

* KYBRD Keyboard

L.S. Least Significant

MAB Microaddress Bus

machine level Designation of machine language level of
operation

macro Same as machine level

MAR Memory Address Register (MEMI)

MB Memory Bus

- MBR Memory Buffer Register (ALU)

MCCR Micro Condition Code Register (ALU)

MDB Microdata Bus

MEMI Memory module; main program storage

ix

MEMFF Memory flip-flop; specifies read or write

micro The microprogram's level of operation

microword Group of bits used to generate control
signals

MIME Microprogrammable Minicomputer Emulator

MR Mask Register (in Am2914)

MLC Micro Loop Counter (CCU)

MPMUX Mapping mux

MPROM Mapping PROM

MSKB Mask Buffer; buffers PL 63-56 to DB

M.S. Most Significant

MSP Miscellaneous Signal Panel

MTCM Micro Test Condition Mux (ALU)

mux Multiplexer

n Variable used to indicate an integer
number

N.A. Not Applicable

opcode Operation Code

PC Program Counter

PI Pending Interrupt

PL Pipeline Register (CCU)

POLMUX Polarity Mux (CCU)

PROM Programmable read-only memory

Q Q register in Am2901's
RA, RB One of 16 general purpose registers in

MIL-STD-1750

RA+n Register numbered as RA + n

RAM Random Access Memory
4

Ri One of 16 2-port RAM locations in Am2901's

x

RQ MIL-STD-1750 intermediate registers for

multiplication and division

RQ+n Register numbered as RQ + n

RX Index register

SR Status Register (Am2914)

SW Status Word (AUX)

TCM Test Condition Mux (ALU)

TCRB Test Condition Register Buffer (ALU)

Timer A MIL-STD-1750 programmable timer (AUX)

Timer B MIL-STD-1750 programmable timer (AUX)

UART Universal Asynchronous Receiver Transmitter

UDACi User Definable Auxiliary Command number i

UDAFi User Definable Auxiliary Function number i

UDTCi User Definable Test Condition number i

WCR Word Count Register (I/O)

YBFR y Buffer; buffers output of Am2901's to DB

I xi

AFIT/GE/EE/79D-11

Abstract

This report describes software and hardware enhancements

made to an existing educationally oriented microprogrammable

minicomputer (MIME). Hardware changes included extensions of

the machine architecture by incorporation of user-definable

fields in the microword, corresponding to user-definable capa-

bilities in the hardware. A microprogramming language was

developed for the machine, as well as a translator. The in-

struction set of MIL-STD-1750, Airborne Computer Instruction

Set Architecture was microprogrammed to demonstrate the utility

of the translator and the processor. MIL-STD-1750 peculiar

hardware was interfaced through the user-definable portion of

the architecture.

The results indicated that a minicomputer instruction set

could be successfully emulated using MIME. The final system

of hardware, software, and documentation provides a valuable

educational tool for studies of microprogramming, emulation,

and computer control.

S. .. xii

MIME: MICROPROGRAMMABLE MINICOMPUTER

EMULATOR, PHASE II

I. Introduction

As indicated by the title, this investigation is a contin-

uation of a previous effort (Ref 1). One result of that effort

was the Microprogrammable Minicomputer Emulator (MIME), which

was designed as a pedagogical and research tool for use in lab-

oratory studies of microprogramming, emulation, and computer con-

trol. At the end of that investigation, referred to in this re-

port as Phase I, the MIME hardware was built but not debugged,

and MIME had never been used to execute actual machine instruc-

tions for any minicomputer. During this investigation, the hardware

was made to cperate correctly, user tools and documentation were

generated, and a minicomputer instruction set was implemented.

Since the words "microprogramming" and "emulation" often give

:!se to confusion, they are defined below as used in the context

of this report.

Microprogramming

In any processor, proper translation of a machine instruc-

tion into a machine operation is dependent upon the application

of control signals in the correct sequence to effect infor-

mation transfers between processor elements. The most common

methods for providing these control signals are random logic

and microprogramming.

Using random logic the machine instructions are decoded

by hard-wired combinatorial and synchronous sequential logic

to provide the needed control signals. Thus, the machine's

response to a given machine instruction is fixed and only

modifiable by making hardware changes. The lowest level of

control allowed the user is machine language instructions,

each of which may involve many data transfers. This control

at the machine language level is referred to in this report

as macroprogramming or machine level programming.

In a microprogrammable machine, by contrast, the control

signals are activated by groups of bits called microwords,

which are stored in a special memory called the control store.

To execute a machine language instruction, a microprogrammable

machine reads a sequence of microwords from the control store

and presents them to the control circuits of the computer.

Each bit or group of bits in the microword controls an indi-

vidual data transfer. Thus, one can determine a microprogrammable

machine's response to an instruction by coding appropriate

, microwords into control store. Microprogramming clearly pro-

vides a level of flexibility in machine operation that cannot

be attained using random logic, by providing control at the

level of individual data transfers between elements within the

computer.

A manufacturer may choose to implement its machine lan-

guage on a microprogrammable machine and to provide the user

with a fixed set of control store contents (e.g., in ROM).

Modifications and enhancements to the control store contents,

or microcode, may be possible by changing the control store

ROM; but generally, this cannot be done by the user. Such

2

/i

computers are often referred to as microprogrammed machines.

Alternatively, a microprogrammable computer can be imple-

mented so that users may write their own data into the control

store. These machines are referred to as user microprogrammable,

or simply as microprogrammable, computers.

EMlation

Emulation may be defined as the combined hardware/soft-

ware interpretation of one machine's instruction set by a

different machine (Ref 2: 475). The machine being emulated

is referred to as the target machine, while the machine upon

which the emulation is done is called the host machine. With

these preliminary definitions, a statement of the objectives

of this investigation is now made.

Statement of the Problem

The overall objectives of this project were:

- To provide sufficient enhancements to MIME and its

documentation to allow emulation of target machine

instructions by a novice microprogrammer. The desire

was that a student with a minimum of training could use

MIME as a valuable learning aid in the areas of computer

control and microprogramming.

- To provide the Air Force Aeronautical Systems Division

Computer Engineering Branch (ASD/ENAIB) with a machine

capable of executing the instruction set of MIL-STD-

1750, Airborne Computer Instruction Set Architecture

(Ref 3). This organization has the primary responsibility

3

for the standard, and desired a computer upon which to

evaluate future changes to the instruction set.

The Microprogrammable Minicomputer Emulator (MIME) is a

user microprogrammable general purpose minicomputer. It was

designed and built as part of a thesis project at the Air Force

Institute of Technology and was intended for use in laboratory

investigations of computer control and microprogramming. How-

ever, at the end of that investigation (Phase I), the project

was incomplete in several areas:

- A complete instruction set had not been implemented on

the machine, hence the design had not been verified.

- No software tools for program development, such as any

form of translator, were available. Programming MIME

was a time consuming and error prone task, since both

- micro and macroprogramming had to be done in hexadecimal

characters.

- All data and program input and output was through a

hexadecimal keypad and several readouts on the front

panel. Although an RS-232 interface had been designed

and built, it had not been fully integrated with MIME

(Ref 4).

- There was no microprogramming reference manual generated

for MIME.

It was desired to eliminate or minimize the shortcomings

of MIME. The actual implementation of a minicomputer instruc-

tion set on MIME would be used as the vehicle to pinpoint the

4

specific areas needing improvement. The MIL-STD-1750 instruc-

tion set was proposed by ASD/ENAIB.

MIL-STD-1750, Airborne Computer Instruction Set Architec-

ture, established a uniform instruction set for airborne

computers to be used in future Air Force avionic weapons

systems. The standard was published in February, 1979. How-

ever, at the beginning of this investigation no machine existed

to execute this instruction set. With this new and untested

standard, ASD/ENAIB desired an implementation that would permit

modification and experimentation. An implementation by emula-

4 tion fulfills this desire.

Goals

In consideration of the previous discussion, two goals

were set for this project: to emulate the complete instruc-

tion set of MIL-STD-1750, and to provide tools and documentation

to enhance MIME's usefulness as a pedagogical and research

machine. These goals tend to support one another. Realization

of the first goal would provide a full minicomputer instruction

set for MIME and would help identify the strengths and weak-

nesses of MIME as a laboratory tool and as a host machine.

Meeting the second goal would not only make realization

of the first goal easier, but also would provide future MIME

users with sufficient information and tools to allow them to

rapidly and correctly microprogram MIME. Information such as

user's documentation for MIME, a translator to allow easier

programming of MIME, and MIL-STD-1750 emulation documentation

would be invaluable in future modifications and evaluations of

5

the MIL-STD-1750 instruction set, in the emulation of other

instruction sets, and in the use of MIME as a pedagogical

device.

Approach

To reach the goals of this effort, the following steps

were taken:

- MIME familiarization

- Related research survey

- Requirements definition

- Hardware design and fabrication

- Software tools design and implementationii - MIL-STD-1750 microcode generation

- Preparation of user documentation

During the first step, familiarity was gained with the

MINE architecture, microinstructions, operating characteris-

tics, and existing documentation. This was done by creating

small microprograms to exercise various features of MIME. Also

during this time many minor errors and inconsistencies in the

original MIME implementation were corrected. This entire

process was conducted with the assistance of one of the

original MIME designers.

The related research survey was conducted to determine

what similar investigations were being made in the area of

emulation in general and implementations of MIL-STD-1750 in

particular. It was hoped if similar work had been done, the

results would be applicable to this effort. This would help

prevent duplication of previous work and would facilitate

6

..

reaching the goals of this investigation by allowing the

authors to directly apply previous results to the current

endeavor.

Requirements definition involved comparing the physical

and logical requirements of MIL-STD-1750 with the physical

and logical capabilities of MIME. This was done to determine

the extent of the changes required to MIME.

Software tools design and implementation embodied the

development of a microprogramming language and an associated

translator for MIME, as well as the creation of a monitor to

allow register and memory location manipulations from a stand-

ard RS-232 terminal. These tools were used to generate and

test the microcode of the MIL-STD-1750 instruction set emula-

tion.

Preparation of user documentation was an on-going effort
throughout the research period. As changes and additions were

made to MIME, the existing documentation was updated. As the

software tools were developed, the related user documentation

was also written.

R t Research Survev

There are several previous and current research efforts

related to this investigation. Thourot designed a specia4

purpose microprogrammable machine and the microcode to execute

the Software Compatible Avionic Computer Family instruction

set (Ref 5). However, this was strictly a paper design. No

hardware was built and the design was not verified. The

instructions that this computer was designed to execute were

7

P

in fact a subset and a forerunner of the current MIL-STD-1750

instruction set. The architecture of the machine was quite

different from the MIME architecture, and microcode developed

for the Thourot machine would have needed major changes to

adapt it to execute on MIME.

At least two corporations are working under contract with

the Air Force to develop prototype MIL-STD-1750 compatible

computers (Ref 6, 7). While the details of either design are

considered proprietary information, the contracts call for

delivery of the prototype machines, macro/micro cross assemblers,

and performance monitoring hardware and/or software. Deliver-

ies are to be made between the last quarter of 1979 and the

second quarter of 1980.

Investigation of the two designs showed that each company

has developed a special microprogrammable machine to execute

the MIL-STD-1750 instruction set. The architectures and micro-

word formats of these machines are significantly different from

that of MIME. The micro software and development tools were

not available during the research period and would have been

difficult to adapt to this project had they been available.

Advanced Micro Devices, Incorporated produces the System

29, a microprogram development system (Ref 8: 3 - 1 to 3 -

10). This package includes a support processor with mass

storage and input/output capabilities and software to generate,

load, save, and debug microcode. While the System 29 was

designed to support the Am2900 series circuits from which MIME

was built it has major weaknesses vis-a-vis this investigation.

8

The microcode generation software (AMDASM) will only support

the Am2900 circuits. MIME contains much additional micropro-

gram-controlled hardware, for which AMDASM will not generate

microcode. Furthermore, AMDASM merely allows the user to

define a set of mnemonics corresponding to the commands for

each Am2900 circuit. It then processes strings of these

mnemonics into microcode. Reading a source program for this

assembler is nearly as difficult as reading the microcode it-

self since the language cannot express the interactions between

individual modules of the computer - this process must be done

mentally by the microprogrammer. This concept is contrary to

the first objective of this effort. A novice microprogrammer

should not be expected to have to learn the circuitry details

in order to use MIME.

Organization

Chapter I has provided an introduction to the concepts of

microprogramming and emulation, and an introduction to the

background and goals of this project. Chapter II provides the

comparison between MIL-STD-1750 requirements and MIME cap&bil-

ities, and defines the additional features needed by MIYE to

perform the MIL-STD-1750 emulation. Chapter III discusses the

development of the necessary MIME hardware, while Chapter IV

discusses software tools development. In Chapter V, the actual

MIL-STD-1750 emulation design is presented, and Chapter VI

includes results, conclusions, and recommendations for further

investigation. Chapters I through VI comprise Volume I of this

9

report.

There are also several appendices to this document.

Appendix A is a MIME User's Manual. Appendix B is a MIL-STD-

1750 Emulation User's Manual. Appendices C and D contain ref-

erence manuals for the MIME Translator and Monitor, respec-
I ttively. Appendices A through D are contained in Volume II.

Volume III is a large format volume containing;

- Appendix E, MIME Translator Source Code.

- Appendix F, MIL-STD-1750 Emulation Source Code.

- Appendix G, MIL-STD-1750 Mapping PROM Listing.

- Appendix H, MIME Modest Monitor Source Code.

- Appendix I, MIME Schematic Diagrams.

-Appendix J, MIME Parts List.

- Appendix K, MIME Wire-run Lists.

- Appendix L, Program to Generate Wire-run Lists.

-- Appendix M, Program to Paginate Pascal Source Listings.

- Appendix N, Programming 2708 EPROM's from Translator

Output Data.

Volumes II and III are available from the Electrical Engineer-

ing Department, Air Force Institute of Technology (AFIT/ENE),

Wright-Patterson AFB, Ohio, 454 33 .

10

II. Requirements Definition

This chapter presents a discussion of the methods used

to determine the hardware, software, and documentation

requirements. The requirements considered were in two

broad categories:

- Logical requirements (registers, operations, etc.) of

the MIL-STD-1750 instruction set not already imple-

mented on MIME.

- Software tools to help clarify and speed the program-

ing and operation of MIME.

The first category of requirements was determined by

comparing, in a systematic manner, the MIL-STD-1750 require-

ments with MIME's existing capabilities. The following

checklist of features was used because it provided a consis-

tent, reasonably comprehensive list of the features of any

computer (Ref 9: 38-39):

- Memory

- Registers

- Data

- Instructions

- Special features: Status of a program, input output

processing, Interrupts, Masking, Protection, Timers,

and Microprogrammability.

Discussions of the MIL-STD-1750 requirements and the

Phase I MIME capabilities are presented in the next two

11

/

sections of this chapter. They are followed by a summary

of the comparison. Finally, the requirements for software

tools are addressed.

MIL-STD-1750 Requirements

This section presents a brief description of the require-

ments specified for the prospective target instruction set

following the checklist of the previous section. A detailed

discussion of each of these requirements may be found in

MIL-STD-1750 (Ref 3).

Memory. MIL-STD-1750 requires that the machine by

capable of addressing 65,536 words of 16 bit word size. There

are various addressing modes required, including register

direct and indirect; memory direct, indirect, and indexed;

and immediate data.

Registers. Sixteen general purpose 16 bit registers are

required, designated RO to R15. There are also several

special purpose registers needed. The Instruction Counter

(IC) must be 16 bits in length and external to the general

purpose registers. The Status Word (SW) is a 16 bit register

whose state is determined by some prior event occurence in

the computer. A 16 bit Fault Register (FR) is set by result

of various machine faults. The logical OR of the FR bits

generates a machine fault interrupt. Formats of the SW and

the FR are shown in Figure 1.

Additional required registers are the Interrupt Mask (IM)

register and Pending Interrupts (PI) register. These registers

allow masking of individual interrupts and a means to

12

ILo

!

Status Word (SW)

BIT 0 1 2 3 4 15

C P Z N SPARE

Control Status (CS) Bits:

C = 1 iff result generates a carry or borrow.
P = 1 iff result is greater than zero.
Z = 1 iff result is zero.
N = 1 iff result is less than zero.

Fault. Register (FR)

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
NPROTECT PARITY I /0 IILLEGAL I SPARE I BITE I

Bits are defined as follows,

0 CPU is attempting to write into a protected address.
1 DMA is attempting to write into a protected address.
2 Memory parity error.

Programmed I/O channel parity error.
DMA channel parity error.

5 Output command used with input opcode or input
command used with output opcode.

6 Programmed I/O transmission error.
7 Other I/O errors.
8 Illegal address.
9 Illegal opcode.

10-12 Spare for future use.
13 Hardware Built In Test Eaipment (BITE) failure.

14-15 Defined by designer.

Figure 1.

Status Word and Fault Register Formats (Ref 31 8 - 9)

13

remember which interrupts are still waiting to be processed.

Finally, the multiply and divide instructions of MIL-STD-

1750 require up to four registers separate from the general

purpose registers. For example, the register transfer

description of double precision integer multiply as stated

in the standard is

(RQ, RQ+I, RQ+2, RQ+3) 4- (RA, RA+1) x DO (1)

(RA, RA+1) -- (RQ+2, RQ+3) (2)

where

RQ, RQ*I, etc. are the registers needed to hold the

double length product, described in the

standard as "logical entities used to clarify
the register transfer descriptions".

RA, RA+1 are the two consecutive general purpose registers

- i initially holding the multiplicand and ulti-

mately holding the product.

DO is the "derived operand", i.e. the multiplier.

The instruction description in the standard specifies

that the only registers to be changed are RA and RA+1,

implying that while possibly RA and RA+1 could be used as

two of the RQ+n, one would still require two additional

registers separate from the general purpose registers. The

mechanics of register transfers would be simplified if all

four RQ+n were separate from the general purpose registers.

Data. The MIL-STD-1750 instruction set is designed to

operate on binary data. The data may be single or double

precision integers or it may be floating point or extended

14

precision floating point numbers. All data is stored in its

sign plus two's complement form. Figure 2 summarizes the

data storage formats.

Instructions. Arithmetic, logical, transfer (branching),

and I/O instructions are included in MIL-STD-1750. There are

also bit manipulation and control instructions provided. A

complete list of the instructions and their operation is

available in Reference 3.

Special Features. There are several special features

required as discussed in the following paragraphs.

Status of a program is kept current by setting the SW,

FR, and IM, dependent upon the current state of the machine.

The address of the next instruction to be executed by the

machine is kept in the IC.

Input/Output (I/0) is handled by a set of special I/O

instructions. As with many minicomputers, I/O can be either

programmed, interrupt driven or by means of direct memory

access (DMA). The I/0 instructions are used to transfer

information between the general purpose registers and I/O

devices or the special purpose registers.

A minimum of 16 interrupts are required as defined in

* Table I. The interrupts are numbered from 0 to 15 with

Interrupt 0 being the highest priority interrupt. All

interrupts may be masked or disabled except Interrupt 0 which

may not be either masked or disabled, and Interrupt i which

can be masked but not disabled. Masking causes an interrupt

to be held in the Pending Interrupts (PI) register for later

15

Single Precision vS LS
Integer I~

Double Precision MBLSB
Integer Is MSH LSH

0 15 31

FlatngPontMSB LSB MSB LSB
i Mantissa IExponent I

U 15 1623 Z4 31

Extended Precision
* Floating Point ISIMantissL. MvSHIExponentikantissa LSHI

0 15 16 23 24 31 32 4.7

S =Sign bit

ISE Least significant bit

LSH =Least significant half

M SB =*Most significant bit

MSH = Most significant half

NOTE: All data stored in sign plus two's complement
representation.

Figure 2. Data Storage Formats (Ref 3: 2 -7)

16

P. ,_im_ _ _ _ _ _ _ _

Table I

Interrupt Definitions (Ref 3:10)

Interrupt

Number Interrupt Name

0 Power Down (cannot be masked or disabled)

1 Machine Error (cannot be disabled)

2 Spare

3 Floating Point Overflow

4 Fixed Point Overflow

5 Spare

6 Floating Point Underflow

7 Timer A

8 Spare

9 Timer B

10 Spare

11 Spare

12 Spare

13 Spare

14 Spare

15 Spare

NOTESs Interrupt Number 0 is highest priority. Priority
decreases linearly with increasing interrupt number.

17

/w

use by the computer.

Each interrupt has associated with it two specified

locations in memory to be used as a "linkage pointer" and a

"service pointer" for the interrupt. Three consecutive

memory locations beginning at the address contained in the

linkage pointer are used to store the old IM, SW, and IC

contents during an interrupt service. Three other consecutive

memory locations, specified by the service pointer, must

contain the new IM, SW, and IC contents to be used in servic-

ing the interrupt. Upon return from the interrupt routine, a

load status instruction is executed to restore the old IM, SW,

and IC values.

Memory parity and memory block protect are optional

features. If used, these features set bits in the FR if an

error is detected in parity or if a write operation is

* attempted on a protected memory block.

MIL-STD-1750 requires the implementation of two timers

--Timer A and Timer B. Both are count-up, 16-bit timers.

Both timers are set, read, started, and stopped using I/0

instructions and both generate an interrupt as they .'roll

over" to zero from maximum count. The only difference

between the two timers is that Timer A is incremented each

10 microseconds while Timer B is incremented each 100 micro-

seconds.

There is no stipulation in MIL-STD-1750 whether the

computer should be microprogrammed or implemented in random

logic. Considering the complexity of some of the instructions

18

(e.g. floating point multiply) and the high probability that

some of the machine operations will be modified as the stan-

dard evolves, a microprogrammable computer would be a very

satisfactory implementation.

MIME Capabilities

This section presents the capabilities of the Phase I

MIME compared to the MIL-STD-1750 requirements. A simplified

block diagram of the Phase I MIME architecture is depicted

in Figure 3. Details of the current MIME architecture can

be found in Appendix A, while details of the Am2900 series

integrated circuits are available in Reference 8.

Memory. MIME was designed and implemented with a 16-bit

Program Counter (PC), corresponding to the IC of MIL-STD-1750

and with a 16-bit word length memory. While the PC allows

65,536 words to be addressed, only 1,024 words of read-write

memory have been implemented.

No hardware address decoding is supplied in MIME. The

machine instruction is fetched from memory under microprogram

control and loaded into the Instruction Register (IR).. The

contents of the IR may then be interpreted by microcoded

routines to determine operand addresses. Use of micropro-

gramming means that MIME can support not only the addressing

modes of MIL-STD-1750 but other modes as well.

Registers. The Am2901 4-bit micro processor slice used

as the heart of the ALU in MIME contains 16 general purpose

registers, each 4 bits in length. Since four of the Am2901

chips are cascaded in the MIME ALU, these registers comprise

19

PAE

~COI~JROL I4 ECONOq

>J EXPSIGNALS

ILR

Figur .MIEAhtetr.PaeI(ef1U1

20/

the 16 general purpose 16-bit registers needed. These reg-

isters can be used to store data used in either microprograms

or machine level programs.

The FR required by MIL-STD-1750 was not available, nor

was the SW. MIME does have a Condition Code Register (CCR)

containing zero, negative, overflow, and carry flags, from

which the SW could be generated. The FR and SW functions had

to be added to MIME.

The IM and PI registers are implemented in hardware on

MIME. These will be discussed under the special features

subsection below.

While there is a single Q register on the Am2901 circuit,

there was no provision in MIME for the RQ+n of MIL-STD-1750.

Consequently,. these register functions needed to be added.

Data. There are no hardware restrictions on data types

processed by MIME, save that numbers used for calculations

in the ALU are expected to be binary. Either sign plus two's

complement or one's complement arithmetic can be used.

Instructions. Since instructions are decoded and executed

by microcoded routines, nearly any conceivable type of machine

instruction can be handled.

Special Features. The special features possessed by

MIME that would support MIL-STD-1750 are discussed in the

following paragraphs.

Status of a program is monitored in MIME by reference

to the CCR. A parallel set of micro condition codes is

available to the user to control the status of the micro

21

i--t/

routine being executed. The PC always contains the address

of the next machine instruction to be executed. A micro PC

sequences the microprogram.

I/0 processing is supported at the microprogram level by

MIME. The contents of any register can be transferred onto

the data bus and thence to the I/0 bus and to peripherals.

Similarly, data can be input to any register. "Handshaking"

flags are provided for programmed I/O, and all hardware is

provided for block transfer direct memory access (DMA).

There were eight levels of priority interrupts implement-

ed on MIME, using the Am2914 Vectored Priority Interrupt

Controller chip. -This integrated circuit contains all of

the registers and priority logic required by MIL-STD-1750.

Interrupts may be disabled, enabled or masked by micro-

instructions, and when an interrupt is requested, the Am2914

outputs an interrupt vector indicating which level of interrupt

desires the machine's attention. This vector may be used to

branch to a segment of microcode to complete the register

manipulations required by the MIL-STD-1750 interrupt scheme.

The Am2914 may also be cascaded to provide any number of

interrupts.

There is no hardware provision for memory protection or

memory parity checking in MIME, although these functions

could be microprogrammed. There were no timers implemented

on MIME, hence they were outstanding requi ts

MIME is fully user microprogrammable. This meanstha_

the user can control each and every transfer of data in MIME

22

r /

by use of appropriate microinstructions. This makes MIME a

flexible host machine for emulation of nearly any 16-bit

machine's instruction set, provided that the target machine

requires a subset of the MIME hardware. MIL-STD-1750 requires

a few hardware additions to MIME, as this section has shown.

Comparison Summary

Table II summarizes the comparison between the MIL-STD-

1750 requirements and the Phase I MIME capabilities. The

requirements column lists the logical requirements to be

fulfilled before MIME could be used to emulate the MIL-STD-

1750 instruction set. Chapter III discusses the physical

realization of hardware to meet the requirements.

Software Tl

This section provides the rationale for the software

tools developed during this investigation. Since no software

was developed for MIME during Phase I, consideration was

given only to the lowest levels of software tools, such as

translator or assembler, monitor and loader. Of these, the

tools judged most crucial were a translator and a monitor.

These are discussed in the following paragraphs.

Translator. At the end of Phase I, the MIME hardware

was essentially complete but no software development had been

done. The generation and testing of a complete instruction

set emulation microprogram would have been exceptionally

difficult if the entire program had to be hand coded and

hand entered into MIME. Therefore, a requirement was identi-

23

Table II

MIME/MIL-STD-1750 Comparison

MIL-STD-1750 Hardware
Feature Requirement MIME Capability Requirement Remarks

Memory 64 K words 64 K words None I K words memory
x 16 bit max. x 16 bit possible implemented.

7 addressing addressing is I K control store
modes microprogrammed implemented

Registers 16 gen. purp. 16 gen. purp. None
Instruction Program None
Counter (IC) Counter (PC)

Status Word (SW) Condition Code SW SW bits derived
Register (CCR) from CCR.

Fault Register None FR
(FR)

Interrupt Mask Mask Register None Am2914
(IN) (MR)

Pending Inter- Interrupt None Am2914
rupts (PI) Latches

Auxillary Regs. I Q register RQ~n Used for mult.
(RQ~n) and divide.

Data 16 bit words 16 bit words None
integer and
floating point

Instructions Arithmetic All types None
Logical microprogrammed
Transfers
1/O

Special
Features

I/O Between gen. 3etween any reg- None
purp. regs. and ister and devices
devices

Interrupts 16 levels 8 levels Expand to 16

Masking Masked inter- Masked inter- None Software setable
rupts held rupts held
pending pending

Protection Optional None None

Timer. Timers A and B None Timers A & B

Nicropro- Vot specified Yes None

24

fied for a translator to convert programs expressed in mnemonics

or in English words into MIME microcode. Such a translator

would be the micro level counterpart of an assembler.

Monitor. The second major software tool required was a

monitor which would allow a user to examine and load registers

and memory from a terminal. Although the MIME front panel

allows these functions, MIME must be halted to examine or

load most registers. Furthermore, the existing front panel

would not allow loading or displaying of the new registers

required by MIL-STD-1750. The monitor should allow the user

access to all registers of interest and should allow a user

to suspend a program in execution, examine and/or change

registers as desired and return to the execution of the

program. By having these capabilities, the monitor would be

a useful tool in the execution and debugging of both micro

-1and macro level programs.

Summary

This chapter has presented a discussion of the hardware

and software requirements for Phase II of the MIME project.

Chapter III will present a discussion of the realization of

the hardware requirements, while software tool development

is the subject of Chapter IV.

25

III. Hardware Realization

This section presents a brief discussion of the alter-

natives considered and the solutions chosen to meet the

hardware requirements determined in Chapter II. It should

be noted at this point that, at the microprogramming level,

the distinction between hardware and software implementations

of the same function is less clear than at the higher levels

of machine programming. Most changes or additions made to

the microprogrammed machine require changes to both the hard-

ware and the microinstruction format and function. Conse-

quently, in this chapter, after the hardware changes are

discussed, the microinstruction changes needed to make the

new hardware work will also be presented; and in turn, the

required microword decoding hardware changes will be covered.

Auxiliary Registers

The Problem. As stated in Chapter II, the auxiliary

registers, RQ through RQ+n, are only needed in multiplication

and division to hold intermediate results of the calculation,

and as work space for the operation. To understand the

required operations of these registers one must understand

the algorithms used for multiplication and division. Multi-

plication is discussed here although the considerations given

apply equally to division, which may be viewed as "multipli-

cation in reverse". A simple algorithm for integer binary

26

multiplication by repeated addition is given below (Ref 21 53)1

1. Start with accumulated product equal to zero.

2. Inspect the multiplier bits individually, starting

with the least significant bit.

3. Add the multiplicand to the accumulated product if

the multiplier bit is a 1; otherwise add O's.

4. Shift the accumulated proauct and multiplier one bit

to the right.

5. Go to step 2 and repeat the loop until all the partial

products are added.

* IWhile many faster and more elegant algorithms exist (Ref

2: 54-57, 10: 129-156), this algorithm is the most straightfor-

ward and provides the greatest insight into the actual machine

operation.

There are several requirements dictated by this algorithm.

First, the register which is to hold the product must be

clearable. This is possible either by loading the register

with zero or by using a direct clear function. Secondly, the

register holding the multiplier must provide the capability of

having its bits examined one at a time. An easy implemen-

tation of this operation is to test the least significant

bit followed by performing a one-bit right shift before

testing the next shift. Finally, the register holding the

multiplicand needs a left shift capability.

Possible Solutions. The first solution considered was

to dedicate part of the 16 registers in the ALU to this task.

The contents of the registers, which would likely be values

in use in the machine program, would be copied into an external

27

L/

memory area, either in main memory or in a dedicated register

file. At the end of the instruction execution the contents

of the registers would be restored to their correct values.

This approach had many disadvantages, chief among which were:

- Machine registers other than those specified by a

given machine instruction may be altered in the execu-

, I tion of that instruction. If the microprogram were

halted before the execution of the machine instruction

is complete, as in a machine error condition, the

contents of the registers would not be those expected

by the machine programmer with no knowledge of the

microroutines involved. This would make debugging a

very difficult task, as well as being a contradiction

to the MIME design philosophy of making both micro and

macro operations as visible to the user as possible.

-The add operation of step 3 and the shift operation of

step 4 of the algorithm require one pass through the

ALU for each 16 bits being processed. This also would

require frequent recomputation of the A and/or B latch

addresses for multiple precision operations.

- Using main memory to store the information was not

desirable since this scheme would reduce the generality

of the MIL-STD-1750 emulation. Mixing of user memory

with memory needed by the microcode would mean that the

microroutines would not be transparent to the machine

level programmer and that the full 64 K of user memory

could not be available for user programs.

28

The next implementation considered was that of simply

using the external memory area as the work and intermediate

storage area. This scheme eliminated the problem of disturb-

ing the general purpose registers, but the second and third

disadvantages above remained. Also, each ALU operation

would require the operands to be fetched into the DBR before

they were used and subsequently restored via the DBR. This

would double the shift and add times, and these two operations

are repeated many times in a multiplication.

The final alternative considered was to use external

hardware shift registers designated AUXI through AUX6. These

registers could be manipulated as shown in Figure 4. This

scheme eliminated the frequent recalculation of operand

locations and avoided unnecessary alteration of the general

purpose registers.

Imvlementation. The last alternative of the three above

was deemed the most feasible. It eliminated interference with

user memory and allowed simpler code, since latches and

registers need not be "juggled". The registers were construct-

ed using the 74S299 universal shift register. This integrated

circuit provides an eight bit register with bidirectional

data lines, left and right shift capabilities, and tri-state

outputs in a single 20-pin package. Two 74S299's were used

for each AUX register and all were connected to communicate

directly with the MIME data bus. Details of the circuit and

its operation are provided in Appendix B.

29

MULTIPLIER MULTIPLICAND

DO, O~n A, 7]~

AUX1,AUX2 AUX3,AUX4 AUX5,AUX6

PROESS

Figure 4. Use of the Auxiliary Registers

30

Status X2= (SW)

The Proble Although MIME possessed a condition code

register (CCR), it contained only bits indicating carry, zero

result, negative result, and overflow as possible results

of ALU functions. The MIL-STD-1750 SW needs the carry, zero,

and negative bits, but also needs a positive result bit.

Additionally, the standard requires the availability of twelve

more bits to be defined at a later date.

Clearly, the four bits presently required for the SW

could be generated from the CCR flags. The positive result

bit is simply the logical NOR of the zero and negative bits.

The problem was how to physically implement this register.

Possible Solutions. One possible solution considered

was to use a memory location to hold the SW information. This

was deemed undesirable for two of the same reasons stated in

the discussion of the auxiliary registers: loss of generality,

and additional use of ALU required to update the register

contents. This scheme was abandoned in favor of a special

purpose hardware register.

Implementation. The required status bits for the SW

were generated as indicated above. These bits were then

multiplexed with the data bus into the inputs of a 74374

register. Clocking was applied to the register such that

each time the CCR was loaded in MIME, the appropriate bits

would be loaded into the SW register. The register was

connected to be loaded from or read to the data bus, so that

its contents could be saved and restored during interrupt

handling, and so that the status could be read and used to

31

determine the results of conditional branching instructions.

Full details of the circuit are presented in Appendix B.

Fault Register (FR)

The Problem. The FR is read and cleared by use of I/O

instructions. Furthermore, anytime one or more of the FR

bits are set, a machine error interrupt must be generated.

Implementation. Although the possibility of using a

memory location for the FR was considered, it was rejected

in favor of a hardware register. The registers used were

the Am2918 quad register. This integrated circuit has two

outputs for each bit of the register; one is a tri-state

output, while the other is a standard totem pole output.

Four registers were connected to be loaded from or read to

the data bus via the tri-state outputs. The standard outputs

of all bits were OR'ed, with the result providing the needed

machine error interrupt request.

*Interrupts

The MIME was originally provided with eight levels of

priority interrupt implemented by the Am2914 Priority Vectored

Interrupt Controller. As previously stated, this integrated

circuit is very easy to cascade to give any number of interrupt

levels. Thus, the only implementation considered was to add

another Am2914 to MIME, yielding the required sixteen levels

of interrupts. Circuit details are in Appendix A.

Timers

The Problem. Timers A and B are required to be 16 bit

32

count-up timers. Each timer must be capable of being loaded,

read, started and stopped by means of I/0 instructions. When

either timer rolls over from maximum count to zero, an

appropriate interrupt must be generated. MIME contained

no capabilities such as these.
4

Possible Solutions. The timers could have been imple-

mented using a single integrated circuit such as the Intel

8253, which contains three counters that can be used as

timers (Ref 11: 10-159 to 10-169). However, these circuits

are typically designed to interface with an eight-bit

microcomputer and hence have only eight I/0 lines although

the internal counters are sixteen-bit counters. Thus, the

data from MIME would have to be latched into registers and

transferred eight bits at a time for a load operation and

vice versa for a data transfer from the timers to the MIME

bus. The circuitry required for the latching and to decode

the MIME control signals into appropriate controls for the

8253 would have increased the chip count enough to overwhelm

the advantage of having the counters on one chip.

The other solution, which was adopted, used four 4-bit

binary counters for each timer. This solution provided a

straightforward implementation and made use of readily

available standard integrated circuits.

Implementation. Each timer consists of four 74193

counters with the outputs driving the data bus through tri-

state buffers. The timers can be individually loaded from

the data biis, A 74124 dual voltage controlled oscillator

33

/

circuit provides the clocks for the timers with one half

(running at 100 KHz and the other at 10 KHz. The zero count

of each timer is decoded to provide the appropriate interrupt

request. Details of the circuit may be found in Appendix B.

Control Ste Expansion

The MIME was originally built with 1 K words of micropro-

gram control store, but the addressing capability and necessary

decoding were provided to expand the control store to a max-

imum of 4 K words. It was decided to expand the control

store to its maximum size by adding the extra 3 K words on a'4 separate printed circuit board. This way the lowest 1 K words

of control store might be used to store resident MIME utilities,

such as a monitor, while the higher addresses in control store

*might be used to hold the microcode necessary for a particular

target machine emulation. Changing the second control store

board would then be a rapid way to change the MIME's charac-

teristics from one target machine to another.

The second control store board, designated CS2, was

implemented on an Augat 8136-URG5 card to be compatible with

the other MIME modules. Type 2708 erasable programmable

read-only memories (EPROM's) were used primarily because the

2708 is both readily available and programmable. Details of

the CS2 circuitry are provided in Appendix A.

M!icowo/r Chanaes

Some changes had to be made in the microword format to

control the added registers. The required control signals

314

I .7

were defined to be:

- Read registers/timers (individually)

- Load registers/timers (individually)

- Start/stop timers

- Clear/shift AUX registers

The load and read operations were accomodated using spare

codes in the BUS DESTINATION (bits 4 - 7) and BUS SOURCE (bits

8 - 11) fields of the microword, but some means had to be

found to select the individual register being read.

As mentioned in. the Introduction, early in the investi-

gation, several errors and incongruities in MIME's design

were eliminated. In doing this, the functions of two fields

in the microword, the ALU A ADDR (bits 20 - 23) and the ALU

B ADDR (bits 16 - 19) were eliminated. These fields were

utilized to control the new hardware. Bits 20 - 23 were

newly defined as auxiliary command (AUX COMMAND) and were

activated by a spare code in the COMMAND field. The new

commands were named User Definable Auxiliary gommands (UDAC,

followed by a hexadecimal number). There are 16 possible

UDAC's (UDACO - UDACF).

Similarly, bits 16 - 19 of the microword were designated

the auxiliary function (AUX FUNCTION) field. These micro-

word options were referred to as user Definable Auxiliary

Functions (UDAF, followed by a hexadecimal number). There

are 16 possible UDAF's (UDAFO - UDAFF).

35

I

By selecting the Aux Load Code (D) in the BUS DESTINATION

field along with a properly defined AUX FUNCTION code, any

register or timer can be loaded. Similarly, to read a

register the Aux Read code (5) is selected in the BUS SOURCE

field along with the appropriate AUX FUNCTION code. The AUX

COMMAND codes accomplish the miscellaneous command functions

required to control the new registers and timers.

Interface to MIME

Interfacing the new hardware needed to emulate the MIL-

STD-1750 computer presented the problem of maintaining MIME's

generality. Any permanent changes to MIME hardware must not

i1 be peculiar to any target machine, yet some target machines

might need peculiar hardware, as in the case of MIL-STD-1750.

This problem was circumvented by dividing the new hard-

ware into two groupst hardware generally applicable to MIME

operation, and hardware peculiar to MIL-STD-1750. The latter

included the AUX registers, the SW and FR, and the timers.

These were implemented on an AUGAT 8136-URG5 circuit card,

with all control signals and test conditions as well as the

data bus brought out to the edge connector. This card was

designated AUX, and scheduled for installation at station I

of the MIME card cage.

The permanent MIME hardware additions consisted only of

expansion of the number of interrupts using an added Am2914

and hardware to decode the AUX COMMAND and AUX FUNCTION fields

of the microword. These decoded signals were made available

at the edge connector at station I in the MIME card cage.

36

The net result of this interface scheme was that a user

could easily reconfigure the MIME hardware to a specific

application by installing a new AUX card and redefining the'

AUX COMMAND and AUX FUNCTION fields in the microword. This

action, coupled with the development of suitable microroutines,

would allow the user the flexibility to configure MIME to meet

the requirements of many diverse applications.

For example, in this effort the AUX card was designed to

implement registers and timers peculiar to MIL-STD-1750. The

microroutines were developed to execute the MIL-STD-1750 in-

structions, and the microcode was stored on CS2. A future

user may decide to emulate, say, the XYZ machine, a mythical

machine with an architecture different from that of MIL-STD-

1750. The user could remove the MIL-STD-1750 AUX board, and

replace it with a new board designed to fit the XYZ architec-

tural requirements. Then, by replacing the MIL-STD-1750

microcode (either by replacing or reprogramming the PROM's

on CS2) with appropriate routines to execute XYZ instructions,

the user will have transformed MIME into an XYZ machine emulator.

Summary

This chapter has presented the development of required

hardware additions to MIME to allow emulation of the MIL-STD-

1750 computer. The rationale for the design decisions and

hardware selections was given as well as a discussion of the

results of those actions.

37

IV. Software Tools

Introduction

This chapter describes two software tools that were

developed to facilitate other tasks involved in this inves-

tigation. The MIME language and the translator consist of a

language used to mnemonically describe the microprogramming

operations and a Pascal program that translates the language

into the equivalent microcode. The MIME Modest Monitor

(MIME/MM) consists of a microprogram that communicates through

a terminal and allows the user to load and examine memory and

register values. It was specifically designed to aid in the

debugging phase of the emulation, but would be useful to any

microprogrammer.

MIME Language and Translator

Goals. The MIME language and translator were designed

towards three primary goals:

- A translator program Was highly desirable to ease the

burden of microprogramming the MIME. Converting a

software design into the microcode for MIME's 64-bit

microword by hand was a tedious and error-prone process.

- A method was needed of insuring that errors in the

microcode were kept to a minimum. By eliminating the

need to hand-manipulate the microcode, the translator

represented a large step in this direction. It was

38

I

also feasible to build into the translator other checks

with which the microprogrammer would otherwise have

to be concerned. This included such items as which

operations can be performed concurrently, the specifics

of setting up ALU operations, and detecting operations

that would produce contention for the data bus.

- It was desired to improve the readability and under-

standability of a microprogram. MIME microcode, in a

64-bit or 16-hexadecimal-characters object form, is

unintelligible without extensive familiarity with the

format and fields of the microword. Adding comments

to this object format, in the form of a verbal descrip-

tion of the microinstruction or its register transfer

language equivalent, aids in the understanding but

also dictates that additional, unusable (to the machine)

information must be carried with the object code. By

mnemonically describing the operations of micropro-

gramming and letting a translator program be concerned

with the object code, these problems assumed a lesser

significance.

These goals all stem from one of the two goals of this

investigation, namely to enhance MIME as a pedagogical tool.

The translator allows a novice microprogrammer, as would be

found in a classroom environment, to begin microprogramming

more readily. It relieves him of the burden of becoming an

expert in the architecture of MIME and its microword before

being able to do even the most basic of tasks. Although the

i 39

-I

translator will not allow every possible option in the micro-

code (certain possible concurrent operations cannot be done

in the translator), the microprogrammer is assured that any

microprogram that translates successfully will perform the

operations on MIME described in the program. Programs that

are not written properly will produce suitable error messages

for the programmer.

Lanpuape Rationale. The MIME language was generally

designed to follow the machine-level operations available in

the microword. In most cases, high level language-like

structures and mnemonics, rather than the more cryptic

assembly language style, were used to express the operations.

This resulted in a more readable and understandable program.

The language maintained the assembly language feature of a

one-to-one correspondence between the microinstruction and

the resulting microcode. Also incorporated were various

assembler directives to allow the microprogrammer options on

output formats and control of the microaddress.

There are a large number of reserved words due to the

restrictions on the operations that are capable of being

expressed by the various fields of the microword. In order

to avoid unnecessarily restricting the microprogrammer, a

feature was included in the language to allow a redefinition

of most of the reserved words. This allows the programmer

to substitute another set of mnemonics which may have more

meaning to the particular problem addressed by the program.

Translator Rationale. Consideration was given to

40

available programs that would perform the translation. For

example, Advanced Micro Devices produces AMDASM, a "meta-

assembler" that will translate mnemonics into microcode (Ref

8: 4 - I). The primary drawback of this system was that it

basically allows only substituting a mnemonic for a value to

be inserted into a field in the microword. This produces

,1 a source program of single word mnemonics and does not permit

adding connective words to give the language a free flowingj format. It was felt that the readability of the langauge to

the non-expert microprogrammer was an important enough

consideration to discard AMDASM and other similar translator

programs in favor of one designed specifically for MIME and

its environment.

What has been referred to as a "cranslator" throughout

this report is in reality a cross-translator, since it runs

on another machine. Writing a true translator to run on MIME

and translate the MIME language into MIME microcode was deemed

inappropriate since control store, where the translator

program would be resident, is a very limited resource on MIME,

being limited to 4K microwords by the microaddressing capability

of the machine. It was also an informal objective to avoid K

extensive microprogramming by hand.

The translator, being specifically designed for the

MIME microword, will probably not see significant changes in

the future. However, features were built into the translator

that aided in the initial design and would aid in future

modifications. The translator will operate in a debugging

41

JI

mode, where various informative messages are printed as the

translator processes each microstatement. A consistency

summary of reserved words and their use, along with a summary

of the various microword functions and what reserved words

are related to the functions, can also be printed to help

in changes to the reserved words and MIME function definitions.

These features are triggered by pseudo-operations in the

translator. They are not explained in the translator reference

manual (Appendix C) to hide them from the average micropro-

grammer. However, a maintenance programmer will find them

* described in the translator source code comments (Appendix E).

A post-processing phase was included in the translator

to prepare the microcode produced in the translation for

actual use. This produces an object file that is either

directly loadable into MIME or which can be used to program

kPROM's (both with suitable interfaces). A technique for

generating mapping PROM's is also included, since a major use

of microprogramming is to emulate another instruction set.

The translator was designed to provide the programmer

with thorough error checking. In addition to syntax errors

for the language, this also includes checking for multiple

use of a microword field, contention for use of the data bus,

attempts to perform operations concurrently that cannot be

done concurrently, and complete specification of functions

(e.g., add operations must have a carry-in bit). Label and

branching usage and consistency are also examined.

42

Lanuage Structure

This section describes the MIME language structure.

An overall description of a microprogram is provided, followed

by a brief discussion of the translator input and output files.

The language was designed around the capabilities of the

MIME microword, which in turn reflects the features of the

Am2900 series of integrated circuits used in the fabrication

of MIME. The various fields in the microword are combined

to accomplish the functions defined by the language.

Microrograms. A microprogram consists of a redefinition

section and a program section, separated by the word PROGRAM,

and terminated by the word END. The redefinition section

allows the programmer to redefine most mnemonics of the

language in terms directly suitable to the problem being

programmed. For example, if a machine is being emulated

that-uses an instruction counter (IC) rather than a program

counter (PC) as found in MIME, the programmer may consider

redefining those words associated with the PC. The redefin-

ition feature also allows the programmer to use more suitable

names for the auxiliary functions and commands.

The program section consists of microstatements from

the language. Comments, denoted by the "#" character at their

beginning and end, are allowed at the end of a microinGtruction.

Labels can precede any microinstruction and are identified by

their terminating colon (e.g., LABELli). The colon may be

followed by a label type, which is necessary for labels used

in multi-way branches and looping statements, as explained

43

later. Constants are denoted by apostrophes, such as '001F'.

Pseudo-operations are available to direct the operation of

the translator and the format of the output files.

Input and Output Files. MIME language microinstructions

are input to the translator on a free-format, 80 column card

image file. More than one microstatement may be permitted

in a single microword, depending on the operations that can

be performed concurrently and which fields of the microword

are used. Each microstatement is terminated by a semicolon,

and a series of microstatements that form a microinstruction

is terminated by a period.

Output from the translator consists of a listing and an

optional object code file. The listing consists of the source

microstatements, the microcode generated, the microaddress

for that microstatement, plus error messages and summary

information regarding the translation process. This can be

used to input the microcode into the MIME using the front

panel keyboard. Alternatively, post-processing of the trans-

lator output can be invoked using a pseudo-operation. This

causes the microcode to be written to the object file after

additional processing. Suitable software (e.g., see Appendix

N) can then use the object file to program PROM's.

When the translator encounters an error in the input

microstatements, an error message is printed, along with a

pointer to the approximate location where the error occurred.

The translator attempts to recover from the error and continue

translating as gracefully as possible. As a last resort, it

44

will scan ahead until it finds the end of a microstatement

(a semicolon) and resume translating at the beginning of

the next microstatement.

Microstatements

The microstatements of the MIME language can be divided

into eight functional groups. Explanations of the specific

effects of each microstatement can be found in Appendix C.

In this section, an overview of the features of these func-

tional groups of microstatements will be presented. A complete

Backus-Naur Form (BNF) definition of the language, along with

an explanation of the BNF notation, can be found in Attach-

ment D of Appendix C.

Bus Transfer Microstatements. This group of microstate-

ments governs the movement of information over the data bus

between the functional units and registers of the MIME. The

format of the microstatement is

LOAD <bus destinatior> FROM <bus source>

Information transfers on the data bus are usually deter-

mined by the BUS SOURCE and BUS DESTINATION fields of the

microword, although other fields may also influence the

information flow. For consistency, all bus transfers use the

same format, regardless of which microword fields are affected.

Memory transfers also use this form of the microstatement,

where the word MEMORY is used as either the bus source or

destination. The User Definable Auxiliary Functions (UDAF's)

are also considered bus transfer operands.

45

ALU Function Microstatements. This group of microstate-

ments governs the operation of the ALU. These microstatements

mnemonically describe the operation of the Am2901 ALU (Ref 8:

2 - 3) and follow the syntax

<ALU operand> <ALU operation> <ALU operand> =-QLU destinatior>

Only certain operand pairs are acceptable to the ALU.

However, in many cases, the ALU operation is such that the

order of the operands is irrelevant (e.g., logical OR). In

these cases, the translator determines the appropriate operand

pair. In cases where order of operands is important, the

translator only allows the operands in the correct order.

Since there are two versions of the arithmetic subtract oper-

ation, the translator selects the appropriate one based on

the order of the operands. The only invalid operand pairs,

regardless of order, are where both operands are the same

(e.g., A XOR A), the pair DBR and B, and the pair Q and B.

The arithmetic add and subtract ALU operation both

require that a carry-in bit be specified. This is appended

to the plus or minus sign, as in the microstatement

A +,1 B = BF

signifying that the carry-in for this add operation is a "1".

The naming convention for the ALU destination mnemonic

was developed to allow easy identification of the destination.

The first two characters may show that the result is shifted

before being stored. The next characters show the location

where the result is stored. The last character shows what

46

is available on the data bus from the ALU. As an example,

an ALU destination of LSBF indicates that the result of the

ALU operation (the "F" output of the ALU) is available to

the data bus and is stored, left shifted by one bit, into

the register addressed by the B address latch.

Some of the destinations of the ALU function signify

that the result is to be shifted left or right one bit before

being stored in the B register or the Q register. In these

cases, the register addressed by the B latch is viewed as

two eight-bit bytes and the Q register as one sixteen-bit

word. Therefore, the programmer must specify what is to be

used as the source for the bit shifted into the Q and B

registers and what is to be shifted between the two bytes

of the B register. This information is required to be appended

to any shifted destination field of the ALU function.

Disable Byte Microstatement. These microstatements are

* used to disable either the high order eight-bit byte or the

low order eight-bit byte when storing the result of the ALU

operation. These microstatements take the form of either

DISABLEUP or DISABLELOW, with the default (when neither is

specified) of both bytes being enabled.

Set Condition CodeMicrostatement. These microstatements

are used to specify which set of condition code flags to load

and the source of the data. Macro or micro condition codes

are selected using SETCC or SETMCC, respectively. Since there

are four condition codes, up to four sources for the setting

of these flags may be specified, with the default for unspec-

47

ified codes being to set that code based on the corresponding

current macro condition code. For example, the microstatement

SETMCC : BNEG, WZERO, CARRYX

would cause the micro negative flag to be set based on whether

the selected byte was negative, the micro zero flag to be set

if the data word is zero, the micro carry flag to be cleared,

and the micro overflow flag, since it was not specified, to

be set based on the macro overflow flag.

InterruDt Control Microstatements. These microstatements

affect the interrupt control field in the microword and corre-

spond to the commands acceptable to the Am2914 Vectored

Priority Interrupt Controller (Ref 8: 2 - 134). Each of

these microstatements corresponds to a setting of the I/O

field in the microword.

Command Microstatements. These single-word microstate-

*ments are used to describe predefined actions and data trans-
fers available in the MIME. Such actions as INCPC (increment

the PC), HALT (stop executing microinstructions), IOWRITE

(write to an I/0 device), and DECB (decrement the B address

latch) fall into this category of microinstructions. Each

of these microstatements corresponds to a setting of the

COMMAND field in the microword.

A Command Microstatements. These microstatements

set the user definable auxiliary command field of the micro-

word. This field is available to an auxiliary circuit board,

which determines the effect of these microstatements.

Transfer Microstatements. This group of microstatements

48

is based on the capabilities of the Am2909/2911 Microprogram

Sequencers, the Am29803 16-Way Branch Control Unit, and the

Am29811 Next Address Control Unit (Ref. 8t2 - 85). These

devices interact to produce three types of transfer micro-

statements, consisting of the multi-way branch, the uncondi-

tional transfer microstatement, and the conditional transfer

microstatement.

The multi-way branch microstatement allows the programmer

to transfer control to one of up to 16 mictostatements. In

the microstatement

ON IR$, IRI, IR2 GO TO DECODER

the label "DECODER" specifies the first microstatement in the

list of possibilities to select from. The branch control

field (IR%, IR1, IR2) determines which microstatement in the

list to transfer to. In actuality, the hardware logical OR's

the three bits in the branch control (bits 0, 1 and 2 - the

three least significant - of the instruction register) with

the least significant three bits of the microaddress of the

label "DECODER", yielding eight possible branch destinations

in this case. The label "DECODER" should be the first of

eight possible microstatements from which to select. One to

four bits can be specified in the branch control field of

the microstatement, yielding two, four, eight and sixteen

way branches. The translator places the start of the list of

branch destinations on a two-, four-, eight- or sixteen-word

boundary - as specified by the label type when the label is de-

fined - so that the OR operation will work properly. For example,

49

!

the label "DECODER" should have been defined as

DECODER s8

since it is being used for an eight-way branch. A higher

numbered label type (e.g.,16) would also work, since a

sixteen-way branch label would also be on an eight-word

boundary.

Unconditional transfer microstatements reflect all the

possibilities that can be generated by the Am29811 Next

Address Control Unit if the condition is forced to either

true or false. These consist of branch microstatements (GO

TO), subroutine microstatements (CALL, RETURN), stack oper-

ations (PUSH, POP), and loop counter operations (LOADCNTR,

LOOP AT). For example, the destination of a GO TO microstate-

ment can be either a label, REGISTER (which always contains

the branch address field of the previous microinstruction),

START (a switch-settable address that is transferred to on a

front-panel reset), ZERO (microaddress zero), and MAP (the

output of the mapping PROM). The loop counter load instruc-

tions are consistent with the format for the bus transfer

microstatements, since the loop counter is loaded from the

data bus. For example, the microstatement

LOADCNTR FROM ALU

would gate the output of the ALU on the data bus and load the

loop counter with the least significant eight bits of this

data. The load counter microstatement could have been a part

of the set of bus transfer microstatements, but since the

counter is controlled by the microaddress sequencers and

50

because of its capability of being used on a conditional

microstatement, it was made a transfer microstatement.

The conditional microstatement follows either an IF-THEN

or an IF-THEN-ELSE format. The condition is selected from the

macro or micro condition codes or various other status bits

available throughout MIME. The condition may be preceded by

the word NOT, causing the condition to be negated. The transfer

microstatements acceptable as options to be executed on a

true or false condition are a subset of the unconditional

transfer microstatements. The Am29811 Next Address Control

Unit has sixteen commands, each of which can select one of

two unconditional transfer microstatements depending on

whether the condition is true or false. Therefore, the IF-

THEN-ELSE construct is restricted to one of those sixteen

pairs of microstatements (there are only five useful and

valid pairs) and the IF-THEN construct is limited to the pairs

that have a CONTINUE microstatement as one of the pair (there

are six of these). Examples of the conditional microstatement

are:

IF NEG THEN CALL FIXNEG

IF DMAOVER THEN GO TO DMAENDING ELSE GO TO REGISTER

MIME Modest Monitor (MIME/MM)

This section provides the goals and rationale for the

design of a minimum-capability interactive monitor. In view

of the modest capabilities of this monitor it was named the

MIME Modest Monitor (MIME/MM).

51

I!

Goal. The goal of the MIME/MM development was to provide

a convenient means of loading and examining MIME's registers

and memory. Although the registers and memory locations

could be manipulated individually from the front panel, using

the front panel was neither rapid nor convenient. Furthermore,

when the user definable functions were implemented as registers,

these registers could not be either loaded or examined from

the front panel.

Rationale. What was needed was a monitor program to

allow register and memory manipulations from a user terminal

or through an external computer acting as a controller. This

monitor had to be microprogrammed, since no machine instruction

set was yet implemented. Also, a microprogrammed monitor

could remain resident in MIME to be used in conjunction with

any emulation.

The overall design strategy of the monitor involved

taking a "snapshot" of the MIME's registers at the time of

MIME/MM invocation by stacking the contents of the registers

in predetermined reserved memory locations. The user could

then examine the "register contents" by examining the stack

of values in memory using MIME/MM commands. Should the user

desire to change the contents of a register, the appropriate

memory location would be changed. The user could then exit

from the monitor by invoking an exit routine to unstack the

register values and to restore the register contents. This

approach was used because several registers were needed to

run the monitor program itself and their contents would have

52

thus been altered. Memory changes could be done directly

as they were commanded by the user since, excepting the stack,

memory was not affected by the MIME/MM.

One additional feature was added to the MIME/MM - the

ability to dump consecutive locations of memory to the terminal

for storage on paper or cassette tape, and to reload those
E

tapes. This would allow the user to save and reload machine

level programs, as well as to load the machine code generated

by an assembler for a target machine (provided, of course,

that this code was .in the correct format).

SI The functions mentioned above - dumping and loading

registers, dumping and loading memory to a terminal for display

or storage and exiting the monitor to the user program - were

deemed sufficient to perform the monitor's function when used

with a terminal. These basic functions could be modified to
SI suit-the user by interfacing a mini or microcomputer to the

MIME I/O port and interacting with MIME/MM from expanded

monitor program running on the external computer. A discus-

sion of this possibility is beyond the scope of the current

investigation, however, and is left for the Recommendations

section of Chapter VI. A description of the MIME/MM program

and its operation is available in Volume II, Appendix D,

MIME Modest Monitor MIMAM User's Manual.

MILMA_-7X Functions

This section provides an overview of the MIME/MM capabil-

ities.

53

L!

Dump Registers (DR). This command dumps the contents

of the registers at the time MIME/MM was invoked. The data

is read from the memory stack, formatted and sent to the

terminal.

Load Registers (LR). The operator is prompted for a

register name and a value to put in that register. The value

is stored in the memory stack until the registers are reloaded

upon exit from MIME/MM.

Load Memorv (LM). The operator is prompted for the

address at which loading is to begin. After receiving the

address, MIME/MM waits for the user to input data for as many

locations as desired. The data is actually loaded into the

memory locations as it is entered.

Dump Memory (DM). This command works like LM, except

that the contents of consecutive memory locations are sent

to the terminal.

Dump toTate (DT). The operator must input the start

address and the number of words to be dumped. The data is

sent from memory to the terminal for recording on magnetic or

paper tape.

Load fom Tane (LT). This command allows loading the tapes

made by using DT. The operator must input the start address

and number of words tc be loaded into memory.

Exit CE). This command causes the register values to be

unstacked and loaded into the MIME registers. Control then

passes to the microaddress specified as IFTCH in the MIME/MM

code. This command was used by the authors to branch to the

54

machine level instruction fetch routine.

Initialize (I). This command performs the same as E,

except that it passes control to a different location. This

command was used to branch to the machine initialization micro-

routine.

Summary

This chapter has presented the design goals and rationale

for two software tools for the MIME - the MIME translator

and the MIME Modest Monitor. These tools were designed to

have general application to any microprogramming effort and

to ease the task of programming, testing, and debugging micro-

code.

The previous chapter discussed the hardware changes made

in the MIME to emulate the MIL-STD-1750 instruction set. This

chapter has provided a discussion of the development of the

software tools generated to make the emulation a tenable task.

In the next chapter, the actual MIL-STD-1750 emulation design

is covered.

55

V. MIL-STD-1750 Emulation

Introduction

This chapter provides an overview of the hardware and

software configuration that was created to emulate the MIL-

STD-1750 instruction set. The hardware development was

based on the comparison of requirements and present MIME

capabilities as defined in Chapters II and III. The software

(microcode) development was based on the register transfer

language and associated explanations contained in MIL-STD-

1750 for each of its instructions.

Deviations from MIL-STD-1750

In some cases, there are differences between the emula-

tion described in this report and MIL-STD-1750. These occurred

as a result of:

- Options available in the description of the instruc-

tion set.

- Ambiguity in the description of the instruction set.

Since MIL-STD-1750 is relatively new, these discrep-

ancies might be expected. When possible, consultation

was made with ASD/ENAIB (the organization responsible

for the standard) and others who were knowledgeable

on the standard to attempt to resolve the problem or

to discover how others have interpreted it. The resulting

emulation, therefore, may not be consistent with a

56A1

future release of the standard when these points are

clarified.

The following are the known clarifications and differ-

ences between this emulation and MIL-STD-1750, dated 21

February 1979:

- None of the input or output instructions marked as

OPTIONAL in the standard were implemented.

- The only bits in the fault register that are used are

bit 5 (input command used with an output code or an

output command used with an input code) and bit 9

(illegal opcode). All other bits either depend on

optional features not implemented (e.g., parity,I protected memory, checking for illegal addresses) or

are undefined.

- Handling of the instruction counter is inconsistent

in the standard. In the definitions section of the

standard, the IC is defined as holding "the address of

the next instruction to be executed" (Ref 3: 1). This

implies that the IC should be incremented immediately

following the fetch cycle and before the fetched

instruction is actually executed. In the MOV instruct-

ion (move multiple words memory to memory), the stand-

ard specifies that the IC points to the current in-

struction (the MOV instruction) until the last word

is transferred. In the definition of the instruction

counter relative addressing mode (ICR) used for branch

statements, the standard says "the content (sic) of the

57

instruction counter (i.e., the address of the current

instruction) is added to the sign extended 8-bit

displacement field of the instruction" (Ref 31 16).

This implies that the IC is not incremented until after

the address computation is made for the branch state-

ment, assuming that by "address of the current instruct-

ion" the standard is referring to the address of the

branch statement currently being executed. In this

emulation, the IC is always incremented immediately

after the instruction fetch and before the instruction

is decoded and executed. The MOV instruction is

treated as a special case to conform to the standard.

the displacement in an instruction counter relative

instruction is added to the address of the instruct-

ion following that instruction, based on a still-

uncertain clarification.

- On start-up of the emulation, all interrupts are

masked (i.e., inhibited) except for interrupts 0 and

1, which cannot be disabled. This allows the pro-

grammer to set up the interrupt handlers without

being interrupted.

- The enable interrupts output command enables the

interrupts "after execution of the next instruction"

(Ref 31 129). This allows one instruction to be

executed following the enable interrupt instruction

and before interrupts are actually enabled, allowing,

for example, the microprogram to enable interrupts

58

as the last instruction in an interrupt service routine

and complete the return from interrupt instruction

(LDST) before other interrupts can be acknowledged.

- The disable/enable interrupt commands to the Am2914

interrupt control unit are not used to implement the

MIL-STD-1750 disable/enable interrupts, since the

two highest priority interrupts cannot be disabled.

Instead, the mask register is used to accomplish the

same effect.

Emulation Hardware

The hardware additions to the basic MIME are contained

on an auxiliary circuit board (to be referred to as the aux

board) installed at the AUX module position. This board has

available to it all the user definable commands, functions,

and test condition signals derived from those fields in the

microword, in addition to the data bus and various other

control signals. This makes it possible to remove one aux

board (for the MIL-STD-1750 emulation, for example) and replace

it with a different aux board that fulfills the hardware re-

quirements for another program or emulation.

The hardware functions realized on the MIL-STD-1750 aux

boards are (see Figure 5):

- Additional general purpose registers

- Timers

- Status word

- Fault register

- Condition flags

59

w 00

H o0"14-h 0 H4w

ii00
%0~ H

03 0.0
02 -ri %0

042~+ :3 d r

600

Registers. Six general purpose registers, in addition

to the sixteen associated with the MIME ALU, were implemented

on the aux board. These would find their primary utility in

doing double precision, floating point, and extended floating

point operations.

Timers. Two timers, as defined in MIL-STD-1750, were

implemented. Timer A increments every 10 microseconds while

timer B increments every 100 microseconds.

Status Word. The status word in MIL-STD-1750 is a

recombination of the carry, negative, and zero macro condition

codes in MIME into the carry, positive, zero and negative bits

of the status word. These only occupy the most significant

four bits of the sixteen bit register. The remaining twelve

bits are available for use should they be defined in later

releases of MIL-STD-1750.

Fault Reaister. The fault register is used to signal

machine error conditions and generates a machine error inter-

rupt if any of its bits are set.

Condition Flags. Three additional condition flags are

available. Two can be set and cleared on command from the

microprogram through the AUX COMMAND field. The third one

is connected to the least significant bit of auxiliary

register four. All can be used as a test condition for a

conditional microstatement.

Aux Board Interface to the Microword. The aux board is

controlled by the AUX COMMAND and AUX FUNCTION fields in the

microword (see Appendix A). The AUX COMMAND field (bits 23 - 20)

61

/

has various commands for the aux board and is enabled by an

"F" in the COMMAND field of the microword (bits 15 - 12).

Note that the auxiliary commands share their field in the

microword with the interrupt control commands. The inter-

pretation of this field depends on which is enabled from the

command field.

The AUX FUNCTION field (bits 19 - 16) is used to select

which register on the aux board is accessed on a read from

or write to the aux -board. A read of the aux board is sig-

nified by a "5" in the BUS SOURCE field (bits 11 - 8) and a

write to the aux board by a "D" in the BUS DESTINATION field

(bits 7 - 4).

The auxiliary conditions are selected using the CCU TC

MUX field (bits 59 - 56).

Emulation Software

-The emulation microcode consists of five main parts:

- Instruction fetch

- Instruction decoding

- Address mode interpretation

- Instruction execution

- Interrupt handling

Figure 6 gives a general flow chart of the organization of

the emulation.

The instruction fetch includes reading a new instruction

from the memory location pointed to by the program counter

and incrementing the program counter to point to the next

memory location. Instruction decoding determines the particular

62

START

NTERU Interrupt
NTERRU yHandling

Instruc-
tion fetch

Instruc-
tion
Decoding

Address

Mode
* Interpre -

tation

Instruc -
ti on
Execution

Figure 6
MIL-STD-1750 Emulation Block Diagram

63

type of instruction involved, based on its opcode, and trans-

fers to the appropriate section of microcode that processes

the instruction. The first step involved in instruction

processing is to determine the addressing mode being used

and to identify the operands to be used for the instruction

execution. The execution phase then uses these operands and

performs the operations specified by the instruction type.

Interrupts may occur at any time but are only recognized

by the microprogram prior to the instruction fetch phase. If

an interrupt is pending, it is processed before the instruct-

ion fetch takes place. Processing the interrupt involves

saving the current machine status and transferring to a

user-defined interrupt routine. A more detailed discussion

of the component parts of the emulation software can be

found in Appendix B.

Emulation Results

The emulation microcode implements the complete MIL-STD-

1750 instruction set, except the extended precision floating

point arithmetic instructions. These were not implemented

because of the time constraints of this investigation. How-

ever, the instructions that were translated into microcode

comprise a representative sample of the types of instructions

available on many current minicomputers. These include single/

double precision integer arithmetic and logical operations,

floating point operations, bit/byte manipulations, subroutine

mechanisms, input/output operations, and control instructions.

64.I

The number of microinstructions (clock cycles) needed to

perform each of the MIL-STD-1750 instructions is tabulated in

Appendix B.

Table III contains a more detailed breakdown of the

microinstruction counts for three representative MIL-STD-1750

instructions. The microroutines for these same instructions

are presented in detail in Appendix B. The microinstruction

counts are converted to execution times and are compared with

the execution times for similar instructions belonging to

other computers.

Although the MIME execution times are significantly

slower than those of the others, certain considerations should

be understood:

- The intent was to develop clear, straightforward micro-

code implementations of the MIL-STD-1750 instructions.

It was not intended to maximize the speed of execution

or to minimize the amount of control store used.

- Multiplication (and division) and floating point nor-

malization are two of the largest consumers of execution

time in this emulation. As can be seen by reference to

Table III, these operations comprise the bulk of the

total execution time for the floating point multiply

instruction. These operations could be implemented in

hardware using available integrated circuits to derive

a significant improvement in instruction execution

times. This could be accomplished either by providing

a hardware multiplier on the aux board or by redesigning

65

Table III

Example Instruction Execution Breakdown

Microinstruction Counts1

Single Single
Instruction Precision Precision Floating

Execution Phase Integer Integer Point
Add Compare Multiply

Instruction Fetch 5 5 5
Address Decoding 13 13 1
Operand Fetch and Set-up 6 5 26
Perform Operation 2 9 660

Handle Exponent 5
Handle Mantissa 313
Normalize Result 333
Miscellaneous 9

Total2 25 31 699

Execution Time (with 2 50 62 1398
microsecond clock)
in microseconds

ISI-I with KEVI1 17.15 16.5 178.53
Extended Arithmetic
Unit (Ref. 12:B-1
to B-4) in microsec.

AN/AYK-15A Proposal by 1 1.25 6
Westinghouse (Ref. 71
Vol. 4) in micro-
seconds

Note 1 - Maximum number of MIME clock cycles.
Note 2 - Total may not be the sum of the listed component

parts, since each value is a worst-case count.
Note 3 - Mantissa multiplication takes 121.1 microseconds.

Normalization takes 18.9 microseconds.

66

the ALU board around the more advanced Am2903 "Super

Slice" processor.

- MIME currently is using 2708 EPROM's that have a 450

nanosecond access time as control store. Although the

MIME system clock is running at a frequency of I MHz,

the wait circuitry required to allow for reliable con-

trol store access cancels every other clock pulse.

Thus, the effective system clock period is 2 micro-

seconds per microinstruction. MIME is capable of oper-

ating at a faster rate if the control store and wait

circuitry were made compatible with the faster speed.

Summary

This chapter has presented the MIL-STD-1750 emulation

design. Discussions of the emulation hardware and emulation

software were given along with a brief discussion of the

emulation results.

67

...........

VI. Results, Recommendations, 4a Cuiclusion

The objectives of this investigation were to add the

necessary enhancements to MIME to allow its use by a novice

programmer, and to provide a machine capable of executing the

MIL-STD-1750 instruction set. Meeting these objectives re-

quired the attainment of two goals:

- Enhancement of MIME hardware, software, and documentation

to provide usable tools for the programmer.

- Microprogramming of the MIL-STD-1750 instruction set.

This chapter discusses the investigation results, provides

recommendations for further research, and presents the con-

clusions reached.

Results

The following paragraphs discuss the primary results of

this effort.

MIME Hardware Enhancement. Initially, the MIME hardware

was essentially complete, but not debugged. No machine instruc-

tions had actually been executed by the machine. During this

phase of the project, the hardware was first made to run re-

liably. This was done with much assistance from one of the

original MIME designers.

In parallel with that activity, the MIME architecture was

compared to the architecture required by the MIL-STD-1750 mini-

computer instruction set. This was done to determine what

hardware additions would be required to emulate that instruc-

68

WI /

tion set on MIME. Several hardware features were found to be

lacking in the MIME design. These features were integrated

into MIME through a newly designed, user-definable interface.

Chapters II and III discuss this facet of the project, while

Appendix A provides a User's Manual for the resulting MIME

hardware.

Microprogramming Language and Translator. Previous to

this investigation, all microprogramming of the MIME had to be

done by hand-assembling a sequence of 64-bit microwords, then

loading this microcode into control store through a keyboard

on the front panel. This was a totally untenable task for the

development of non-trivial microprograms, since errors were

difficult to find and correct.

To remedy this situation, a MIME microprogramming language

was defined. This language allowed the microprcgrammer to

* express microroutines in free-flowing statements and mnemonics.

A translator was crested to convert this text into MIME micro-

code while doing error and consistency checks on the program.

The translator can provide both MIME microcode and the code

for mapping a target instruction set's opcodes into the corre-

sponding microcode routines. The code thus generated may be

prograrmmed into EPROM's and inserted into the control store

and mapping PROM sockets in MIME. The language and translator

are discussed in Chapter IV, a reference manual is included as

Appendix C, and the information required to program EPROM's

from the translator output is presented in Appendix N.

M t. The translator was used in the development of a

69

monitor program called the MIME Modest Monitor (MIME/MM).

MIMEiMM allows the user to load and dump memory and registers

through a terminal. This capability speeds the evaluation

and debugging of both macro and microprograms. The monitor

is discussed in Chapter IV and is fully described in Appendix

D.

MIL-STD-1750 Emulation. A major subset of the MIL-STD-

1750 instruction set was microprogrammed. The extended pre-

cision floating point arithmetic operations were not imple-

mented due to time constraints, but all of the other instruc-

tions were microcoded. This included all floating point and

single/double precision integer arithmetic and logical instruc-

tions as well as the bit manipulation, register and memory

manipulation, input/output, and control types of instructions.

The MIL-STD-1750 instruction set was used to help define

the requirements for the user-defined additions to MIME, as

well as to test hardware and software enhancements. Further-

more, the emulation helps fill the requirement of the Aero-

nautical Systems Division Computer Engineering Branch (ASD/

ENAIB) to have a "test-bed" for evaluation of the standard

instruction set. A discussion of the emulation structure and

rationale is advanced in Chapter V, and Appendix B provides a

reference manual.

Documentation. An underlying task during all portions of

this investigation was to update existing documentation and

provide new documentation as needed. In addition to the

appendices already mentioned, there are wire-run lists, schematic

70

diagrams and parts lists for all hardware and source code

listing for all software in Appendices E through M.

Recommendations

This section advances several recommendations for further

investigations involving MIME and/or the MIL-STD-1750 emulation.

Computer Based Development System, For MIME to be truly

useful as a research/teaching tool requires its integration

into a development system. Such a system might include:

- A computer based controller with user I/O and mass

storage capabilities.

- Transportation of the translator program to the con-

troller. This would allow rapid changes to be made in

microcode with the results stored in mass storage. The

controller should be capable of running an implementation

of Pascal.

A control store manager to act as the interface between

control store and the MIME I/O. This would allow micro-

code to be transferred from control store to the con-

troller (and thence to mass storage), and vice-versa,

through the MIME I/O ports.

- Writable control store to allow microcode to be loaded

by the control store manager.

- An executive program to be run on the controller to

interact with and expand the capabilities of the MIME/MM

and the control store manager (ideally in a higher order

language for ease of implementation/use).

71

.... III I I. , , i " " I a

- Cross-translator(s) for target machine assembly or

higher order languages to run on the controller.

A possible configuration for a development system is

shown in Figure 7. Writable control store could be easily

implemented by designing a new CS2 board with RAM instead of

EPROM. The control store manager might be either a hardware

design, or it could be realized as a microprocessor-based

subsystem.

ALU Redgsign. Since the MIME was designed, Advanced Micro

Devices, Incorporated has introduced the Am2903 "Super Slice"

and the Am2904 Status and Shift Control Unit, which contains

most of the logic required to surround the ALU chips (Ref 8:42 - 30 to 2 -55). The Am2903 has built-in multiply and divide

logic, has facilities for an expanded register file, and has

features to more efficiently handle floating point operations,

particularly normalization. Since, as discussed in Chapter V,

the multiply and normalize segments comprise the majority of

the execution time of a floating point multiply operation,

reducing these segments' execution times would greatly improve

the overall performance of the operation. The MIME ALU might

be significantly improved by redesigning it around these new

circuits. It is recommended that the feasibility of such a

redesign be investigated.

MIL-STD-1750 Extension. The extended precision floating

point instructions of MIL-STD-1750 should be implemented to

complete this emulation. This would mostly require driver

routines to call upon the existing floating point routines and

72

CONTROL
STORE

0

U2 H
DE-e 4

H CONTROL 0

D2

00oH

U22

* 2p4

.1w 0

w H

E-400
En 0E-

73

I , ,- .- , , o , .. - -o .;

extend their use. Also, it is recommended that the feasibility

of implementing such optional features as memory protection,

parity checking and activation of additional Fault Register

bits be evaluated.

Microcoded Sef-diagnostics. As an aid to assuring the

proper operation of MINE, a series of self-diagnostic routines

could be generated. These routines could be activated upon

start-up and could check the status of memory, registers,

buses, etc., reporting any faults found to the operator. Such

routines would be best implemented in microcode since only

microcode has access to all of MIME's processor elements.

The objectives stated in Chapter I have been essentially

met. The implementation of the MIL-STD-1750 instruction set

has demonstrated that MIME is in fact capable of executing

a minicomputer instruction set. Furthermore, since the MIL-

STD-1750 implementation is microprogrammed, future modifications

and enhancements to the instruction set may be done with relative

ease. Since the instruction and register requirements of many

processors are subsets of the MIL-STD-1750 requirements, the

authors feel assured that any of those processors could be

emulated by MIME. Any additional hardware that might be needed

to accomplish such emulations could be incorporated by making

use of the user-definable functions and commands added during

this investigation.

The software development tools which were developed during

this investigation were demonstrated to make the microprogramming

74

task an easier one. The user is relieved not only of the

tedium of hand assembling large amounts of microcode, but of

the effort and frustration of discovering and correcting

minor errors in microword formatting and program consistency.

Finally, the documentation amassed during this effort

provides the user with a complete, consistent set of references.

Information is included to allow future users to utilize MIME's

hardware features, to correctly microprogram MIME with minimum

wasted effort, and to make extensions or modifications to the

present machine. Thus, with these three elements - usable

hardware, usable software tools, and usable documentation -

MIME has become a viable research/pedagogical system.

-j7

- 75

BibliograDhv

1. Purvis, Richard E. and Ronald D. Yoho. MIME: Micronro-
grammable Minicomputer Emulator. Unpublished Thesis.
Wright-Patterson Air Force Bases Air Force Institute of
Technology, 1978.

2. Abd-alla, Abd-elfattah M. amd Arnold C. Meltzer. Principles
of Digital Computer Design, Vol 1. Englewood Cliffs:
Prentice Hall, 1976.

3. MIL-STD-1750 (USAF). Airborne Computer Instruction Set
Architecture. Washingtont Department of Defense, 21
February 1979.

4. Iftekhar, Saleem and John Pennett. Design of an RS232
Interface for the Microprogrammable Minicomputer Emulator
(MIME). Unpublished laboratory report. Wright-Patterson
Air Force Base: Air Force Institute of Technology, 1978.

5. Thourot, Frederick G. Design of the Processor for Software
Compatible Avionics Computer Family. Unpublished Thesis.
Wright-Patterson Air Force Bases Air Force Institute of
Technology, 1977.

6. Airborne Digital Avionics Module (ADAM). U. S. Air Force
contract F33657-74-C-0727. Contracted with McDonnell
Douglas Astronautics Company, St. Louis, MO.

7. Proposal for AN/AYK-15A Processor Development. Response to
RFP F33615-79-R-1733. Westinghouse Electric Corp.,
Baltimore, MD, 1979.

8. The Am2900 Family Data Book with Related Support Circuits.
Sunnyvale, CA: Advanced Micro Devices, Inc., 1978.

9. Madnick, Stuart E. and John J. Donovan. Operating Systems.
New York: McGraw-Hill, 197 4.

10. Hwang, Kai. Computer Arithmetic Principles, Architecture,
and Design. New Yorks John Wiley and Sons, 1979.

11. Intel = Data Catalog. Santa Clara, CA: Intel Corpor-
ation, 1977.

12. Microcomputer Processors. Maynard, MA: Digital Equipment
Corporation, 1978.

76

Vita

Thomas R. Hoyt was born on 5 December 1947 in Kalamazoo,

Michigan. A 1966 graduate of Gull Lake Community Schools,

Hickory Corners, Michigan, he attended Northwestern University,

Evanston, Illinois, from which he received the degree of

Bachelor of Science (Mechanical Engineering) in June 1971.

He received a commission in the USAF through Officer Training

School in October 1971, and was assigned to Williams AFB,

Arizona for Undergraduate Pilot Training. He received the

aeronautical rating of Pilot in October 1972, and served as

an RF4C aircraft commander at Zweibrucken AB, Germany until

December 1976. He then was assigned to the Recon/Strike
System Program Office at Wright-Patterson AFB, until being

assigned to the School of Engineering, Air Force Institute

of Technology, in June 1978.

* 1 Permanent Address: 9827 East DE Avenue
Richland, MI 49083

77

Vita

Dean A. Myers was born on 3 July 1950 in Los Angeles,

California. A 1967 graduate of Westchester High School, Los

Angeles, California, he attended Loyola University of Los

Angeles for three years, after which he entered the United

States Air Force Academy. After graduating from the Academy

in June, 1974 with a Bachelor of Science in Electrical

Engineering, he served as a Computer Systems Analyst at
Headquarters, Air Force Logistics Command, Wright Patterson
AFB, Ohio until entering the School of Engineering, Air

Force Institute of Technology, in June, 1978.

Permanent Address: 6406 West 84th Street
Los Angeles, CA 90045

*1

78

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wen Data Entered)

PAGE READ INSTRUCTIONS
REPORT DOCUMENTATION PBEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

U. AFIT/GCSlEE/79-11__
. TITLE- (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

MIME, MICROPROGRAMMABLE MINICOMPUTER MS Thesis
EMULATOR, PHASE II

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(#)

Thomas R. Hoyt and Dean A. Myers
Capt, USAF Capt, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERSAir Force Institute of Technology

(AFIT-EN)
Wright Patterson AFB, Ohio 45433

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Computer Engineering Branch (ASD/ENAIB) December, 1979
Aeronautical Systems Division 13. NUMBEROF PAGES

Wright Patterson AFB, OHIO 45433 92
14. MONITORING AGENCY NAME & ADDRESS(iI diffeent from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSIFICATION.DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, I dilfferent from Report)

IS. SUPPLEMENTARY NOTES
Approved for public release; lAW AFR 190-17

J. P. A ipps, or, USAF
Director of ulic Affairs

19. KEY WORDS (Continue on ,eveore aide ifn ncessry and Identify by block number)

Microprogramming
Emulation
Bit Slice Architecture
AMD 2900
MIL-STD-1750

20. ABSTRACT (Continue on reverse side It neceeary and Identify by block number)

SThis report describes software and hardware enhancements made
to an existing educationally oriented microprogrammable minicom-
puter (MIME) that was implemented using the Am2900 series of
integrated circuits. Hardware changes included extensions of the
machine architecture by incorporation of user-definable fields in
the microword, corresponding to user-definable capabilities in
the hardware. A microprogramming language was developed for the

DID *, 1473 EOITION OF I NOV I' 1S OBSOLETE

DJAN UUNCLASSIFIEDSECURIT CLASSIFICATION€ OF THIS PAG *f Dt n

UNCLASSIFIED

SEdUITY CLASSIFICATION OF THIS PAGE(R"-w D -te ,ntatad)

machine, as well as a translator. The instruction set of /w
MIL-STD-1750, Airborne Computer Instruction Set Architecture was

microprogrammed to demonstrate the utility of the translator and

the computer. MIL-STD-1750 peculiar hardware was interfaced

through the user-definable portion of the architecture.
The results showed that a minicomputer instruction set could

be successfully emulated using MIME. The final system of hardware,

software, and documentation provides a valuable educational tool

for studies of microprogramming, emulation, and computer control.,

I
I/

SECURITY CLASSIFICATION OF THIS PAGE(W"On Dt Entered)

